An integrated approach for scene understanding based on Markov Random Field model
نویسندگان
چکیده
-ln this paper, we propose a Markov Random Field model-based approach as a unified and systematic way for modeling, encoding and applying scene knowledge to the image understanding problem. In our proposed scheme we formulate the image segmentation and interpretation problem as an integrated scheme and solve it through a general optimization algorithm. More specifically, the image is first segmented into a set of disjoint regions by a conventional region-based segmentation technique which operates on image pixels, and a Region Adjacency Graph (RAG)is then constructed from the resulting segmented regions based on the spatial adjacencies between regions. Our scheme then proceeds on the RAG by defining the region merging and labeling problem based on the MRF models. In the MRF model we specify the a priori knowledge about the optimal segmentation and interpretation in the form of clique functions and those clique functions are incorporated into the energy function to be minimized by a general optimization technique. In the proposed scheme, the image segmentation and interpretation processes cooperate in the simultaneous optimization process such that the erroneous segmentation and misinterpretation due to incomplete knowledge about each problem domain can be compensately recovered by continuous estimation of the single unified energy function. We exploit the proposed scheme to segment and interpret natural outdoor scene images. Region adjacency graph Markov random field Region labeling Region clusters Energy function Simulated annealing
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملEstimating scene flow using an interconnected patch surface model with belief-propagation inference
This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring scene motions through the use of a Markov Random Field, whilst the patchbased nature of the model al...
متن کاملWearable Mobility Aid for Low Vision Using Scene Classification in a Markov Random Field Model Framework
This article describes work on a novel approach to vision enhancement for people with severe visual impairments. This approach utilizes computer vision techniques to classify scene content so that visual enhancement of the scene can identify semantically important concepts. The mediated view of a scene presented to the user is in the form of a highly-saturated color image in which distinct colo...
متن کاملIntegrated Preventive and Predictive Maintenance Markov Model for Circuit Breakers Equipped With Condition Monitoring
The Circuit Breaker (CB) is one of the most important equipment in power systems. CB must operate reliably to protect power systems as well as to perform tasks such as load disconnection, normal interruption, and fault current interruption. Therefore, the reliable operation of CB can affect the security and stability of power network. In this paper, effects of Condition Monitoring (CM) of CB on...
متن کاملA Region-Based Filter for Video Segmentation
This thesis addresses the problem of extracting object masks from video sequences. It presents an online, dynamic system for creating appearance masks of an arbitrary object of interest contained in a video sequence, while making minimal assumptions about the appearance and motion of the objects and scene being imaged. It examines a region-based approach, in contrast to more recently popular pi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 28 شماره
صفحات -
تاریخ انتشار 1995